\(\int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx\) [307]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 28, antiderivative size = 133 \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=\frac {2304 c^7 \cos ^7(e+f x)}{1001 f (c-c \sin (e+f x))^{7/2}}+\frac {576 c^6 \cos ^7(e+f x)}{143 f (c-c \sin (e+f x))^{5/2}}+\frac {648 c^5 \cos ^7(e+f x)}{143 f (c-c \sin (e+f x))^{3/2}}+\frac {54 c^4 \cos ^7(e+f x)}{13 f \sqrt {c-c \sin (e+f x)}} \]

[Out]

256/3003*a^3*c^7*cos(f*x+e)^7/f/(c-c*sin(f*x+e))^(7/2)+64/429*a^3*c^6*cos(f*x+e)^7/f/(c-c*sin(f*x+e))^(5/2)+24
/143*a^3*c^5*cos(f*x+e)^7/f/(c-c*sin(f*x+e))^(3/2)+2/13*a^3*c^4*cos(f*x+e)^7/f/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.09, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {2815, 2753, 2752} \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=\frac {256 a^3 c^7 \cos ^7(e+f x)}{3003 f (c-c \sin (e+f x))^{7/2}}+\frac {64 a^3 c^6 \cos ^7(e+f x)}{429 f (c-c \sin (e+f x))^{5/2}}+\frac {24 a^3 c^5 \cos ^7(e+f x)}{143 f (c-c \sin (e+f x))^{3/2}}+\frac {2 a^3 c^4 \cos ^7(e+f x)}{13 f \sqrt {c-c \sin (e+f x)}} \]

[In]

Int[(a + a*Sin[e + f*x])^3*(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(256*a^3*c^7*Cos[e + f*x]^7)/(3003*f*(c - c*Sin[e + f*x])^(7/2)) + (64*a^3*c^6*Cos[e + f*x]^7)/(429*f*(c - c*S
in[e + f*x])^(5/2)) + (24*a^3*c^5*Cos[e + f*x]^7)/(143*f*(c - c*Sin[e + f*x])^(3/2)) + (2*a^3*c^4*Cos[e + f*x]
^7)/(13*f*Sqrt[c - c*Sin[e + f*x]])

Rule 2752

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2753

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Dist[a*((2*m + p - 1)/(m + p)), Int
[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \left (a^3 c^3\right ) \int \cos ^6(e+f x) \sqrt {c-c \sin (e+f x)} \, dx \\ & = \frac {2 a^3 c^4 \cos ^7(e+f x)}{13 f \sqrt {c-c \sin (e+f x)}}+\frac {1}{13} \left (12 a^3 c^4\right ) \int \frac {\cos ^6(e+f x)}{\sqrt {c-c \sin (e+f x)}} \, dx \\ & = \frac {24 a^3 c^5 \cos ^7(e+f x)}{143 f (c-c \sin (e+f x))^{3/2}}+\frac {2 a^3 c^4 \cos ^7(e+f x)}{13 f \sqrt {c-c \sin (e+f x)}}+\frac {1}{143} \left (96 a^3 c^5\right ) \int \frac {\cos ^6(e+f x)}{(c-c \sin (e+f x))^{3/2}} \, dx \\ & = \frac {64 a^3 c^6 \cos ^7(e+f x)}{429 f (c-c \sin (e+f x))^{5/2}}+\frac {24 a^3 c^5 \cos ^7(e+f x)}{143 f (c-c \sin (e+f x))^{3/2}}+\frac {2 a^3 c^4 \cos ^7(e+f x)}{13 f \sqrt {c-c \sin (e+f x)}}+\frac {1}{429} \left (128 a^3 c^6\right ) \int \frac {\cos ^6(e+f x)}{(c-c \sin (e+f x))^{5/2}} \, dx \\ & = \frac {256 a^3 c^7 \cos ^7(e+f x)}{3003 f (c-c \sin (e+f x))^{7/2}}+\frac {64 a^3 c^6 \cos ^7(e+f x)}{429 f (c-c \sin (e+f x))^{5/2}}+\frac {24 a^3 c^5 \cos ^7(e+f x)}{143 f (c-c \sin (e+f x))^{3/2}}+\frac {2 a^3 c^4 \cos ^7(e+f x)}{13 f \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.47 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.55 \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=-\frac {18 c^3 \cos ^7(e+f x) \sqrt {c-c \sin (e+f x)} \left (-835+1421 \sin (e+f x)-945 \sin ^2(e+f x)+231 \sin ^3(e+f x)\right )}{1001 f (-1+\sin (e+f x))^4} \]

[In]

Integrate[(3 + 3*Sin[e + f*x])^3*(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(-18*c^3*Cos[e + f*x]^7*Sqrt[c - c*Sin[e + f*x]]*(-835 + 1421*Sin[e + f*x] - 945*Sin[e + f*x]^2 + 231*Sin[e +
f*x]^3))/(1001*f*(-1 + Sin[e + f*x])^4)

Maple [A] (verified)

Time = 38.37 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.61

method result size
default \(\frac {2 \left (\sin \left (f x +e \right )-1\right ) c^{4} \left (\sin \left (f x +e \right )+1\right )^{4} a^{3} \left (231 \left (\sin ^{3}\left (f x +e \right )\right )-945 \left (\sin ^{2}\left (f x +e \right )\right )+1421 \sin \left (f x +e \right )-835\right )}{3003 \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(81\)
parts \(\frac {2 a^{3} \left (\sin \left (f x +e \right )-1\right ) c^{4} \left (\sin \left (f x +e \right )+1\right ) \left (5 \left (\sin ^{3}\left (f x +e \right )\right )-27 \left (\sin ^{2}\left (f x +e \right )\right )+71 \sin \left (f x +e \right )-177\right )}{35 \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {2 a^{3} \left (\sin \left (f x +e \right )-1\right ) c^{4} \left (\sin \left (f x +e \right )+1\right ) \left (165 \left (\sin ^{6}\left (f x +e \right )\right )-765 \left (\sin ^{5}\left (f x +e \right )\right )+1565 \left (\sin ^{4}\left (f x +e \right )\right )-2095 \left (\sin ^{3}\left (f x +e \right )\right )+2514 \left (\sin ^{2}\left (f x +e \right )\right )-3352 \sin \left (f x +e \right )+6704\right )}{2145 \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {2 a^{3} \left (\sin \left (f x +e \right )-1\right ) c^{4} \left (\sin \left (f x +e \right )+1\right ) \left (5 \left (\sin ^{4}\left (f x +e \right )\right )-25 \left (\sin ^{3}\left (f x +e \right )\right )+57 \left (\sin ^{2}\left (f x +e \right )\right )-91 \sin \left (f x +e \right )+182\right )}{15 \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {2 a^{3} \left (\sin \left (f x +e \right )-1\right ) c^{4} \left (\sin \left (f x +e \right )+1\right ) \left (315 \left (\sin ^{5}\left (f x +e \right )\right )-1505 \left (\sin ^{4}\left (f x +e \right )\right )+3205 \left (\sin ^{3}\left (f x +e \right )\right )-4539 \left (\sin ^{2}\left (f x +e \right )\right )+6052 \sin \left (f x +e \right )-12104\right )}{1155 \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(374\)

[In]

int((a+a*sin(f*x+e))^3*(c-c*sin(f*x+e))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/3003*(sin(f*x+e)-1)*c^4*(sin(f*x+e)+1)^4*a^3*(231*sin(f*x+e)^3-945*sin(f*x+e)^2+1421*sin(f*x+e)-835)/cos(f*x
+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 265 vs. \(2 (129) = 258\).

Time = 0.26 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.99 \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=\frac {2 \, {\left (231 \, a^{3} c^{3} \cos \left (f x + e\right )^{7} - 21 \, a^{3} c^{3} \cos \left (f x + e\right )^{6} + 28 \, a^{3} c^{3} \cos \left (f x + e\right )^{5} - 40 \, a^{3} c^{3} \cos \left (f x + e\right )^{4} + 64 \, a^{3} c^{3} \cos \left (f x + e\right )^{3} - 128 \, a^{3} c^{3} \cos \left (f x + e\right )^{2} + 512 \, a^{3} c^{3} \cos \left (f x + e\right ) + 1024 \, a^{3} c^{3} + {\left (231 \, a^{3} c^{3} \cos \left (f x + e\right )^{6} + 252 \, a^{3} c^{3} \cos \left (f x + e\right )^{5} + 280 \, a^{3} c^{3} \cos \left (f x + e\right )^{4} + 320 \, a^{3} c^{3} \cos \left (f x + e\right )^{3} + 384 \, a^{3} c^{3} \cos \left (f x + e\right )^{2} + 512 \, a^{3} c^{3} \cos \left (f x + e\right ) + 1024 \, a^{3} c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{3003 \, {\left (f \cos \left (f x + e\right ) - f \sin \left (f x + e\right ) + f\right )}} \]

[In]

integrate((a+a*sin(f*x+e))^3*(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

2/3003*(231*a^3*c^3*cos(f*x + e)^7 - 21*a^3*c^3*cos(f*x + e)^6 + 28*a^3*c^3*cos(f*x + e)^5 - 40*a^3*c^3*cos(f*
x + e)^4 + 64*a^3*c^3*cos(f*x + e)^3 - 128*a^3*c^3*cos(f*x + e)^2 + 512*a^3*c^3*cos(f*x + e) + 1024*a^3*c^3 +
(231*a^3*c^3*cos(f*x + e)^6 + 252*a^3*c^3*cos(f*x + e)^5 + 280*a^3*c^3*cos(f*x + e)^4 + 320*a^3*c^3*cos(f*x +
e)^3 + 384*a^3*c^3*cos(f*x + e)^2 + 512*a^3*c^3*cos(f*x + e) + 1024*a^3*c^3)*sin(f*x + e))*sqrt(-c*sin(f*x + e
) + c)/(f*cos(f*x + e) - f*sin(f*x + e) + f)

Sympy [F(-1)]

Timed out. \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sin(f*x+e))**3*(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

Maxima [F]

\[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{3} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {7}{2}} \,d x } \]

[In]

integrate((a+a*sin(f*x+e))^3*(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^3*(-c*sin(f*x + e) + c)^(7/2), x)

Giac [A] (verification not implemented)

none

Time = 0.39 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.83 \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=-\frac {\sqrt {2} {\left (60060 \, a^{3} c^{3} \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 15015 \, a^{3} c^{3} \cos \left (-\frac {3}{4} \, \pi + \frac {3}{2} \, f x + \frac {3}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 9009 \, a^{3} c^{3} \cos \left (-\frac {5}{4} \, \pi + \frac {5}{2} \, f x + \frac {5}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 2574 \, a^{3} c^{3} \cos \left (-\frac {7}{4} \, \pi + \frac {7}{2} \, f x + \frac {7}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 2002 \, a^{3} c^{3} \cos \left (-\frac {9}{4} \, \pi + \frac {9}{2} \, f x + \frac {9}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 273 \, a^{3} c^{3} \cos \left (-\frac {11}{4} \, \pi + \frac {11}{2} \, f x + \frac {11}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 231 \, a^{3} c^{3} \cos \left (-\frac {13}{4} \, \pi + \frac {13}{2} \, f x + \frac {13}{2} \, e\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )\right )} \sqrt {c}}{96096 \, f} \]

[In]

integrate((a+a*sin(f*x+e))^3*(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

-1/96096*sqrt(2)*(60060*a^3*c^3*cos(-1/4*pi + 1/2*f*x + 1/2*e)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 15015*a^3
*c^3*cos(-3/4*pi + 3/2*f*x + 3/2*e)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - 9009*a^3*c^3*cos(-5/4*pi + 5/2*f*x +
 5/2*e)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - 2574*a^3*c^3*cos(-7/4*pi + 7/2*f*x + 7/2*e)*sgn(sin(-1/4*pi + 1/
2*f*x + 1/2*e)) + 2002*a^3*c^3*cos(-9/4*pi + 9/2*f*x + 9/2*e)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + 273*a^3*c^
3*cos(-11/4*pi + 11/2*f*x + 11/2*e)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - 231*a^3*c^3*cos(-13/4*pi + 13/2*f*x
+ 13/2*e)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))*sqrt(c)/f

Mupad [F(-1)]

Timed out. \[ \int (3+3 \sin (e+f x))^3 (c-c \sin (e+f x))^{7/2} \, dx=\int {\left (a+a\,\sin \left (e+f\,x\right )\right )}^3\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{7/2} \,d x \]

[In]

int((a + a*sin(e + f*x))^3*(c - c*sin(e + f*x))^(7/2),x)

[Out]

int((a + a*sin(e + f*x))^3*(c - c*sin(e + f*x))^(7/2), x)